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Adaptive Optics (AO) improves the efficiency of the optical devices in confocal imaging systems by reducing wavefront 
aberrations. Aberration is caused by imperfections within the system and reduces the optical signal to noise ratio of the 
resultant images besides deteriorating the quality of the images. An adaptive optics system comprises a wavefront sensor 
and a deformable mirror (DM), is a straightforward solution to compensate for this distortion. In confocal microscopy, the 
wavefront sensor can be supplanted with an optimization algorithm. We have previously implemented the general simulated 
annealing (SA) algorithm for optimizing confocal microscopes. In this paper the modified version of the simulated annealing 
algorithm, fast simulated annealing (FSA) is investigated which takes less than one hundredth of the optimization time 
required by the general version.  
 

(Received October 17, 2012; accepted October 30, 2012) 

 

Keywords: Fast simulated annealing (FSA), Blind optimization, Adaptive Optics (AO), Boltzmann distribution, Optical system 

 

 

1. Introduction 
 

Simulated annealing (SA) is a metaheuristic algorithm 

whose purpose is to locate an appropriate approximation to 

the global optimum of a given cost function in a defined 

and discrete search space [1]. The concept of the SA 

technique comes from the physical process of heating to a 

temperature that permits many atomic rearrangements, and 

then slowly cooling a substance allowing it to reach to the 

thermal equilibrium at each temperature until the material 

freezes into an ordered crystalline structure or into a 

structure with the lowest energy [1]. With SA, random 

samples from the search space are generated to be 

searched for which direct sampling is difficult. The goal of 

the SA algorithm is merely to find the best possible 

solution. 

In the optimization problem, each point in the search 

space corresponds to a state s of a physical system, and the 

steps within the SA algorithm moves from one point to 

another in its neighbourhood, which is accepted 

probabilistically. The energy function is x(s) which serves 

as the objective function to be optimized. x(s) is equivalent 

to the internal energy of the system when it is in state s. 

SA brings the system from an arbitrarily chosen initial 

state to a state with the energy function as close as 

possible to the optimal value. In the other word SA can 

find the state at which the maximum or minimum of the 

optimizing variable occurs [2-3].  

Unlike many other iterative improvement algorithms 

which do not allow movements towards higher energy 

states, SA allows occasional increases in energy caused by 

introducing some random perturbation. This increase in 

energy is moderated by the synthetic temperature and a 

probability function. The synthetic temperature in the SA 

algorithm is used in order to determine how often the 

algorithm switches between local and global searches. In 

the SA algorithm, the synthetic temperature initially is 

high enough to permit an aggressive random search, and 

most uphill moves are allowed. As the temperature cools 

down, fewer uphill moves are allowed. At very cold 

temperatures, very few disruptive uphill moves are 

permitted. In this temperature regime, annealing closely 

resembles standard downhill-only iterative improvement 

SA is favoured due to its efficiency with less 

computational complexity. Compared to SA, most of the 

known techniques for obtaining an optimum solution 

require an exponentially increasing number of steps as the 

problem becomes larger. SA serves as a more efficient 

method than exhaustive enumeration in finding an optimal 

solution in a limited time of optimization [4].  

In SA the entire solution space is represented using 

the approximation of the space by a distribution, which 

can be Normal, Boltzmann or Cauchy. These distribution 

functions are the most common used ones. SA algorithm 

involves 3 functional relationships: 

(1) g(x): Probability generating function of search 

space. The function is a distribution used to approximate 

the search space. This distribution can be Normal, 

Boltzmann or Cauchy, depending on the variant of the SA 

technique used.  

(2) h(x): Probability of accepting the new value of 

energy function given the previous value. For SA, this 

takes the form of a function known as the Metropolis 

probability. Metropolis probability, also known as 

Boltzmann probability function. 

(3) T(k): The schedule adapted to anneal the synthetic 

temperature T with each execution of the entire loop, 

measured in annealing time steps. The solution will 
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fluctuate in a random fashion when T is large initially, but 

as T decreases due to the annealing schedule, the solution 

should be more likely to improve and move towards the 

global optimum. An annealing schedule, explains the 

choice of initial temperature, how many iterations are 

performed at each temperature, and how much the 

temperature is decreased at each step as cooling proceeds. 

Table 1, shows each of the above functional relationships 

for different versions of the SA algorithm [5].  

 
Table 1. Variations on the SA algorithm. D in the table is 

the dimension of the search space. k is incremented each 

time when the optimization problem reaches to the 

equilibrium state [5].
 
 ΔX shows the rate of change of X 

(variables’ vector). So X = X0 + ΔX where X0 denotes 

the current state and X shows the next state of variables’  

                                      vector.  
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 According to Table 1, annealing schedule and the 

start temperature are the two main parameters that can 

cause the algorithm to be faster or slower. In the newer 

versions of the SA, it has been tried to modify these two 

parameters along with taking into account a more effective 

generating function.  

In this study we explain the application of Cauchy 

distribution function as the generating function and using 

the corresponding annealing schedule to reduce the 

elapsed time for the algorithm to converge to the optimal 

value. We added a few more modifications on the search 

space such that each variable would be searched in its 

dynamic range to make the algorithm even faster. 

 
 

2. Methodology 
 

SA comprises 2 loops, as follows. 

 

2.1 The Ordinary Optimization Loop 

 

After entering a random initial state, SA considers a 

neighbour s’ of the current state s, which is reached by 

slightly altering s and decides whether to move the system 

to the new state. If the value of x(s’) is better than that of 

x(s), then the system will move to state s’. Otherwise the 

algorithm will probabilistically accept the new solution 

and enter a separate loop, the Boltzmann Optimization 

Loop (BOL). The ordinary loop in fact acts as a local 

search engine.  

 

2.2 The Boltzmann Optimization Loop 

 

If the value of x(s) is better than that of x(s’), then the 

state s’ is accepted with the probability P (Eq. 1). 

 

   
   

                                             (1) 

 

where     |          |  is the change in the energy 

function caused by the change in state.  This stands as the 

choice for h(x) in all versions of the SA algorithm. After 

this stage, the algorithm enters the Boltzmann optimization 

loop, which introduces a large perturbation (usually with 

the full range of variable) to    in order to escape the 

neighbourhood within which this state lies. This prevents 

the algorithm to trap into the local extremum. The 

Boltzmann loop plays the role of the global search in the 

algorithm. The new state s’’ is then tested in the same way 

as in the ordinary loop: If x(s’’) is a better solution than 

x(s) then x(s’’) becomes the new optimal solution, and the 

loop is repeated until the Boltzmann loop has been 

executed five times. The number five has been empirically 

obtained. The system once again performs the ordinary 

optimization loop on the optimal solution obtained from 

the five iterations (the number five was optimized 

experimentally, [1]). The ordinary loop is repeated until 

stopping conditions are satisfied for the current synthetic 

temperature. The algorithm then applies the annealing 

schedule to the synthetic temperature before the entire 

loop is carried out once again. A target temperature, 

named freezing temperature, is initially set and when the 

synthetic temperature falls below that, the algorithm 

terminates.    

 

 
 

Fig. 1. General SA algorithm; the algorithm is used to 

optimize 52 voltage values sent to a deformable mirror in  

                          an adaptive optics system [6].   

 

As indicated in Fig. 1, there is an initial voltage set 

that is sent to the corrector. The initial voltage set is 

usually a vector of zero. However, a random search 

algorithm is used to generate a start voltage vector for the 

SA algorithm, so that the algorithm begins with this 

voltage vector instead of using the zero vector. Using the 

random search algorithm helps the optimization algorithm 

to have a shorter convergence time. The algorithm for the 
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random search is based on the same algorithm used in the 

BOL.   

It can be proven in general SA that any point within 

the search space can be sampled infinitely often in 

annealing time: if we let    be the probability of sampling 

the search space on the k
th

  iteration then the product of the 

probabilities of not generating a state during each iteration 

must be 0 (Eqs. 2 and 3): 

 

∏       
 
                                    (2) 

 

or equivalently:  

 

∏   
 
                                                  (3) 

 

The problem is to find an appropriate annealing 

schedule T(k) such that the above formula is satisfied. 

Given that for the general SA the schedule is:  

 

     
 

     
                                         (4) 

Hence, 

 

∑   
 
    ∑            

    ∑
 

 

 
             (5) 

 

As explained earlier, the SA algorithm takes over an 

hour to find the global optimum.  The algorithm used in 

this study though is the fast simulated annealing (FSA) 

algorithm which has a search space generated by the 

Cauchy distribution (Eq. 6). 

 

     
 

            
                           (6) 

 

where A and B are constants which determine the shape of 

the distribution. It also uses a different annealing schedule 

(Eq. 7) for the synthetic temperature, which allows this 

synthetic temperature to cool at a faster rate than in 

general SA, and so reach the target temperature and 

therefore fulfil the stopping condition with a quicker rate. 

 

   
  

 
                                                  (7) 

Hence, 

∑   
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                       (8) 

 

To evaluate the performance and error of the 

algorithm we applied the algorithm on a 4
th

 order 

polynomial. The reason that the polynomial function was 

chosen is as follows. Firstly, SA algorithm is a solving 

method which operates on the domain of those 

optimization problems, in which the sets of feasible 

solutions are discrete or can be reduced to discrete and the 

polynomial function has this feature. Secondly, SA 

algorithm is well suited to those problems in which many 

variables needs to be optimized independently at once; 

here four variables are to be optimized simultaneously.  

The SA algorithm is used to reduce the deviation of 

the graph plotted of the 4
th

 order polynomial         
         from the graph for   , finding the value of 

the coefficients, a, b, c, d, and e, which accomplish this 

task in the process. Each perturbation of the system 

involves altering the five coefficients within the 

polynomial curve, and the sum of the squared differences 

between each of the plotted points on the two graphs was 

taken as the energy function to be minimized. Although 

the evaluation was done on the 4
th

 order equation to 

optimize only the five variables, but the algorithm is able 

to optimize any number of variables in a solution space. 

The initial temperature was considered as 1000 as the 

performance of the algorithm versus time elapsed to 

converge the algorithm to the optimal value for this 

temperature was the lowest. The other values of initial 

temperatures that have been tested were 10, 100, and 

10000. In the same way, the synthetic freezing temperature 

was considered as 0.2, while 0.000001, 0.001, 0.01, 1, and 

10 were tested. Stopping criteria was satisfied by the 

freezing temperature, it can however be set as the elapsed 

time, the number of iterations, and the amount of error.  

 

 

3. Evaluation 
 

The FSA algorithm following the algorithm given in 

Figure 2 was implemented in MATLAB 2010a and tested 

on a Pentium IV computer with 2.2 GHz CPU and 2.2 GB 

memory. 

 
Table 2. Results obtained from 6 independent repeats of 

the algorithm. The optimal deviation is the deviation 

calculated for the obtained optimal solution at each trial.  

 

Trial a b c d e 
Optimal 

deviation 

1 1.813 0.338 0.112 3.931 0.122 87.40 

2 0.006 0.028 0.185 0.419 0.138 69.10 

3 1.813 0.338 0.112 3.931 0.122 87.40 

4 0.316 0.120 0.449 1.491 0.239 57.14 

5 0.213 0.183 0.264 0.897 0.256 19.82 

6 0.328 0.190 0.286 1.021 0.172 159.342 

 

Table 2 shows the final values of the coefficients 

obtained from each repeat of the algorithm which allows 

the best fit of the graph for                  to 

    , along with the energy function of the state the final 

graph represents. The graphs shown in Figure 3 illustrate 

four states of the progression of the algorithm in 

optimizing the polynomial curve. The solutions of the 

ordinary and Boltzmann optimization loops produced at 

these states are shown as well.  

The speed of the FSA compared to the general SA is 

given in Table 3. The elapsed time is reduced more than 

100 times.  

 
Table 3. Comparison between the speeds of the SA 

algorithms in the general SA and the FSA. 

 

 Time taken to optimize system 

(s) 

General SA >3600 

FSA 26 
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Fig. 2. The FSA flowchart; the algorithm is executed repeatedly until the median of the differences between the           

10 consecutive  solutions  and  their mean is smaller than one tenth of their range. In this flowchart, the deviation of  

               the polynomial curve from the exponential function is minimized to obtain the optimal solution.  
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Fig. 3. Four states of the algorithm in the progress of the optimization problem; (a), (b), (c), and (d) are four states 

of the polynomial curve towards to be exponential curve. Synthetic temperature is (a) 5000, (b) 500, (c) 5,                       

(d) 0.2. Graph for     is plotted in blue. Graph of                  with optimal combination of 

coefficients obtained so-far during execution of program is plotted in green. The solution obtained for each iteration 

in the Ordinary Optimization Loop (OOL) is in red and for the Boltzmann Optimization Loop (BOL) is  in  magenta. 

 

 

4. Discussion 
 

Previously we have experimented three well-

established optimization algorithms, namely SA [6-8], 

genetic algorithm [9] and particle swarm optimization [10-

11]. All the three algorithms took sometimes up to several 

hours to converge to their optimal value. This was due to 

the fact that the algorithm was not searched in an efficient 

probability distribution function with its cooling schedule. 

Moreover the algorithms did not search in an appropriate 

range of values for the optimizing variables.   

The optimization algorithms that we have used are 

probabilistic hence they may converge to different values 

each time when executed if the runtime is not sufficient. 

The graphs shown in Fig. 4, illustrate the optimal 

polynomial graphs obtained from each of the executions of 

the algorithm displayed in Table 2, along with the 

solutions of the ordinary and Boltzmann optimization 

loops produced at the time of the termination of the 

program on stopping conditions having been met. The 

optimal polynomial graphs given in Figure 4, are different. 

This is due to the fact that the optimal deviation in each 

trial given in Table 2 is different one from another. In 

practice, usually the algorithm is executed couple of times 

and then the best solution is chosen as the solution of the 

optimization problem. The best optimal values of the 

coefficients of a, b, c, d, and e from the optimization of the 

polynomial curve are given in Table 4. The coefficients 

correspond to the graph in Figure 4(d). 

Table 4. The best optimal values of the coefficients which 

provided the best fitting of the polynomial curve to the 

exponential curve on Fig. 4(d) 

 

a b c d e 

0.213 0.183 0.264 0.897 0.256 

 

The energy function of the initial solution calculated 

for the polynomial was 143295.32. The final value of the 

energy function being reduced to 19.82 after the optimal 

solution was attained. The optimal values of the energy 

function obtained throughout the course of the execution 

of the algorithm are given in the bar chart shown in Fig. 5. 

 

 
 

Fig. 5. Energy minimization in the progress of the SA 

algorithm. 
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Fig. 4. Optimization convergence results in the trails given in Table 2. (a) Graph of the polynomial curve from trial 

1, (b) Graph of polynomial curve from trial 4, (c) Graph of polynomial curve from trials 2, (d) Graph of polynomial  

                                                     curve from trial 5, (e) Graph of polynomial from trial 6.  

  

 

We note that all the values in the progression of the 

optimizing process have been normalized (xnormalized) using 

the formulae given in Eq. 9 such that the different graphs 

and their deviations can be compared to each other. Ideal 

solution (exponential curve), optimal solution obtained so 

far, solution obtained from ordinary loop, solution 

obtained from Boltzmann loop are  the variables that have 

been normalized. Given x be the variable is to be 

normalized: 

 

            
         

              
                    (9) 

 

 

To be able to find the range of each of the optimizing 

variables, we used a random search algorithm [9,12]. In 

fact, as explained earlier, the ranges of the variables that 

most likely generate the optimal solution can be found. 

The ordinary loop and Boltzmann loop then search more 

efficiently in these ranges. 

The FSA will be used for optimization of the confocal 

microscope using a sensor-less method that we have 

previously implemented [8]. The signal processing block 

diagram of the sensor-less optimization technique is given 

in Fig. 6. 
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Fig. 6. Signal processing block diagram of the sensor-

less optimization technique. SLD: super luminescent 

diode, PS: personal computer, I: intensity of the 

photodetector   acquired    by    the    microphone   port.  

 

 

In this setup, the photodetector signal is transferred 

into the microphone port. The signal is then processed in 

Matlab by the optimization algorithm. The output of the 

algorithm is a set of 52 voltage values which are sent 

through PCI7200 to the deformable mirror (DM). The 

shape of the mirror’s surface is changed and a new 

wavefront generated hence the photodetector signal level 

varied. This process continues until one of the stop 

conditions is fulfilled. The final shape of the mirror’s 

surface produces a higher photodetector signal level than 

its initial shape.   

 

 

5. Conclusion 
 

In this study, we have investigated the methodology 

of the FSA algorithm. We explain the application of 

Cauchy distribution function as the generating function 

and using the corresponding annealing schedule to reduce 

the elapsed time for the algorithm to converge to the 

optimal value. We discussed the performance of the 

general and FSA. By optimizing the number of iteration in 

the ordinary and Boltmann loops, we reached a faster 

optimization algorithm. Searching around the most likely 

value found using the random search algorithm, the FSA 

became even faster. The simulation was carried out on 

optimizing the coefficients of a 4
th

 order equation to be 

fitted on the exponential curve. Results showed that the 

algorithm is able to find the optimal coefficients through 

the FSA algorithm more efficiently and much faster. We 

reached one hundredth time shorter convergence time than 

that of the original SA.  
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